Package: personalized2part 0.0.2
personalized2part: Two-Part Estimation of Treatment Rules for Semi-Continuous Data
Implements the methodology of Huling, Smith, and Chen (2020) <doi:10.1080/01621459.2020.1801449>, which allows for subgroup identification for semi-continuous outcomes by estimating individualized treatment rules. It uses a two-part modeling framework to handle semi-continuous data by separately modeling the positive part of the outcome and an indicator of whether each outcome is positive, but still results in a single treatment rule. High dimensional data is handled with a cooperative lasso penalty, which encourages the coefficients in the two models to have the same sign.
Authors:
personalized2part_0.0.2.tar.gz
personalized2part_0.0.2.zip(r-4.5)personalized2part_0.0.2.zip(r-4.4)personalized2part_0.0.2.zip(r-4.3)
personalized2part_0.0.2.tgz(r-4.4-x86_64)personalized2part_0.0.2.tgz(r-4.4-arm64)personalized2part_0.0.2.tgz(r-4.3-x86_64)personalized2part_0.0.2.tgz(r-4.3-arm64)
personalized2part_0.0.2.tar.gz(r-4.5-noble)personalized2part_0.0.2.tar.gz(r-4.4-noble)
personalized2part_0.0.2.tgz(r-4.4-emscripten)personalized2part_0.0.2.tgz(r-4.3-emscripten)
personalized2part.pdf |personalized2part.html✨
personalized2part/json (API)
# Install 'personalized2part' in R: |
install.packages('personalized2part', repos = c('https://jaredhuling.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jaredhuling/personalized2part/issues
Last updated 4 years agofrom:c1f86b3c38. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win-x86_64 | NOTE | Oct 31 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 31 2024 |
R-4.4-win-x86_64 | NOTE | Oct 31 2024 |
R-4.4-mac-x86_64 | NOTE | Oct 31 2024 |
R-4.4-mac-aarch64 | NOTE | Oct 31 2024 |
R-4.3-win-x86_64 | NOTE | Oct 31 2024 |
R-4.3-mac-x86_64 | NOTE | Oct 31 2024 |
R-4.3-mac-aarch64 | NOTE | Oct 31 2024 |
Exports:cv.hd2partfit_subgroup_2parthd2parthdgammaHDtweedie_kfold_augsim_semicontinuous_data
Dependencies:askpassbase64encbslibcachemclicodetoolscolorspacecpp11crosstalkcurldata.tabledigestdplyrevaluatefansifarverfastmapfontawesomeforeachfsgenericsggplot2glmnetgluegtableHDtweediehighrhtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonlitekernlabknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmeopensslpersonalizedpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownsassscalesshapestringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxgboostyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Cross validation for hd2part models | cv.hd2part |
Fitting subgroup identification models for semicontinuous positive outcomes | fit_subgroup_2part |
Main fitting function for group lasso and cooperative lasso penalized two part models | hd2part |
Fitting function for lasso penalized gamma GLMs | hdgamma |
Fit a penalized gamma augmentation model via cross fitting | HDtweedie_kfold_aug |
Plot method for hd2part fitted objects | plot.cv.hd2part plot.hd2part |
Prediction function for fitted cross validation hd2part objects | predict.cv.hd2part |
Prediction method for two part fitted objects | predict.hd2part |
Generates data from a two part distribution with a point mass at zero and heterogeneous treatment effects | sim_semicontinuous_data |