Package: hierSDR 0.1

hierSDR: Hierarchical Sufficient Dimension Reduction

Provides semiparametric sufficient dimension reduction for central mean subspaces for heterogeneous data defined by combinations of binary factors (such as chronic conditions). Subspaces are estimated to be hierarchically nested to respect the structure of subpopulations with overlapping characteristics. This package is an implementation of the proposed methodology of Huling and Yu (2021) <doi:10.1111/biom.13546>.

Authors:Jared Huling [aut, cre]

hierSDR_0.1.tar.gz
hierSDR_0.1.zip(r-4.5)hierSDR_0.1.zip(r-4.4)hierSDR_0.1.zip(r-4.3)
hierSDR_0.1.tgz(r-4.4-any)hierSDR_0.1.tgz(r-4.3-any)
hierSDR_0.1.tar.gz(r-4.5-noble)hierSDR_0.1.tar.gz(r-4.4-noble)
hierSDR_0.1.tgz(r-4.4-emscripten)hierSDR_0.1.tgz(r-4.3-emscripten)
hierSDR.pdf |hierSDR.html
hierSDR/json (API)

# Install 'hierSDR' in R:
install.packages('hierSDR', repos = c('https://jaredhuling.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jaredhuling/hiersdr/issues

On CRAN:

3.00 score 2 stars 9 scripts 149 downloads 7 exports 10 dependencies

Last updated 3 years agofrom:f5fe8e2720. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:anglehier.phd.nthier.sphdphdprojnormsemi.phdsimulate_data

Dependencies:latticelbfgslocfitMASSMatrixnloptrnumDerivoptimxpracmaRcpp